fin-accounting
суббота, 3 ноября 2018

CFA - Как рассчитывать текущую (приведенную) стоимость денежного потока (PV)?

Рассмотрим порядок расчета текущей или приведенной стоимости единичного денежного потока, с поясняющими примерами, в рамках изучения количественных методов финансового анализа по программе CFA.

Фактор будущей стоимости связывает сегодняшнюю текущую (приведенную) стоимость (PV, англ. 'present value') денежного потока с его будущей стоимостью (FV, англ. 'future value'). Этот коэффициент позволяет рассчитать как FV, так и PV.

Например, 5-процентная ставка приносит будущий доход в размере $105 за 1 год.

Какой должна быть текущая (первоначальная) сумма, вложенная под 5%, чтобы она выросла до $105 через 1 год?

Ответ: $100 представляют собой текущую стоимость (PV) для будущей суммы (FV) в размере $105, которая должна быть получена через 1 год, при ставке вклада 5%.

Используя будущий денежный поток, который должен быть получен в течение N периодов, и процентную ставку за период r, мы можем преобразовать формулу (2) будущей стоимости денежного потока следующим образом:

FVN = PV * (1 + r)N

\( \mathbf { PV=FV_N \left[ 1 \over (1+r)^N \right] }\)

PV = FVN * [1 / (1 + r)N]     (формула 8)

или

PV = FVN * (1 + r)-N

Из формулы 8 видно, что фактор текущей стоимости (англ. 'present value factor'), (1 + r)-N является обратной величиной фактора будущей стоимости (1 + r)N.

Пример расчета текущей стоимости денежного потока.

Страховая компания выпустила гарантированный инвестиционный сертификат (GIC), который гарантирует выплату $100 000 в течение 6 лет с 8-процентной прибылью.

Какую сумму страховщик должен инвестировать сегодня, чтобы через 6 лет обеспечить выплату обещанной суммы по сертификату?

Решение:

Мы можем применить формулу 8, чтобы найти текущую (приведенную) стоимость, используя следующие данные:

FVN = $100,000
r = 8% = 0.08
N = 6

PV = FVN (1 + r)-N
= $100,000 * [1 / (1.0 8)6]
= $100,000 * (0.6301696) = $63,016.96

Можно сказать, что сегодня $63 016,96 при процентной ставке 8% эквивалентны $100 000, которые будут получены через 6 лет.

Дисконтирование сегодняшней суммы $100 000 делает будущую сумму в размере $100 000 эквивалентом $63 016,96, с учетом временной стоимости денег (TVM).

Как показывает временная линия на рисунке ниже, $100 000 дисконтированы в течение 6 полных периодов.

Текущая стоимость (PV) $100 000 в момент времени t = 6. Текущая стоимость (PV) $100 000 в момент времени t = 6.

Пример прогнозирования текущей стоимости денежного потока.

Предположим, что у вас есть ликвидный финансовый актив, который принесет вам $100 000 через 10 лет от текущей даты.

Ваша дочь планирует поступить в колледж через четыре года, и вы хотите знать, какова будет текущая (приведенная) стоимость актива к этому моменту.

С учетом 8% ставки дисконтирования, какова будет стоимость актива через 4 года от текущей даты?

Решение:

Стоимость актива ($100 000) - это текущая стоимость через 10 лет. При t = 4 эта сумма будет получена 6 лет спустя - см. рисунок ниже.

Связь между текущей и будущей стоимостью актива. Связь между текущей и будущей стоимостью актива.

С помощью этой информации вы можете вычислить стоимость актива через 4 года от текущей даты, используя формулу 8:

FVN = $100,000
r = 8% = 0.08
N = 6

PV = FVN (1 + r)-N
= $100,000 * [1 / (1.08)6]
= $100,000 * (0.6301696)
= $63,016.96

Временная линия на рисунке выше показывает будущий платеж в размере $100 000, который должен быть получен при t = 10. На временной шкале также показана стоимость денежного потока при t = 4 и при t = 0.

По сравнению с суммой при t = 10, сумма при t = 4 представляет собой прогнозируемую текущую стоимость, а сумма при t = 0 является текущей приведенной стоимостью (на сегодняшний день).


Задачи, требующие вычисления текущей стоимости (PV) требуют определения  фактора текущей стоимости
(1 + r)-N.

Текущая стоимость зависит от процентной ставки и количества периодов начисления процентов следующим образом:

  • При заданной ставке дисконтирования, чем дальше в будущем будет получена сумма, тем меньше будет текущая стоимость (PV) этой суммы.
  • Для одного и того же момента времени, с ростом ставки дисконтирования уменьшается текущая стоимость будущей суммы.

Расчет текущей (приведенной) стоимости с промежуточным начислением процентов.

Напомним, что проценты могут выплачиваться раз в полгода, ежеквартально, ежемесячно или даже ежедневно.

Для расчета процентных платежей, производимых более 1 раза в год, мы можем изменить формулу текущей стоимости (8).

Напомним, что rS - котируемая (заявленная) процентная ставка и она равна периодической процентной ставке, умноженной на количество периодов начисления в каждом году.

В целом, если в году есть более 1 промежуточного периода начисления, мы можем выразить формулу расчета текущей стоимости (PV) как:

PV = FVN * (1 + rS/m)-mN   (формула 9)

где:

m = количество периодов начисления в году,
rS = заявленная годовая процентная ставка,
N = количество лет.

Формула 9 очень похожа на формулу 8.

Как мы уже отмечали, фактор текущей стоимости и фактор будущей стоимости являются обратными значениями по отношению друг к другу. И добавление в формулу частоты начисления процентов не влияет на эту взаимозависимость между двумя факторами.

Единственное различие заключается в использовании периодической процентной ставки и соответствующего количества периодов начисления.

Следующий пример иллюстрирует формулу 9.

Пример расчета текущей (приведенной) стоимость при ежемесячном начислении процентов.

Менеджер канадского пенсионного фонда знает, что фонд должен выполнить единовременный платеж в размере $5 млн. через 10 лет. Она планирует сегодня инвестировать некоторую сумму в гарантированный инвестиционный сертификат (GIC), чтобы эта инвестиция выросла до необходимой суммы в $5 млн.

Текущая процентная ставка по GIC составляет 6 процентов в год, с ежемесячным начислением процентов.

Сколько она должна сегодня инвестировать в GIC?

Решение:

Используя формулу 9, чтобы находим требуемую текущую стоимость:

FVN = $5,000,000
rS = 6% = 0.06
m = 12
rS / m = 0.06/12 = 0.005
N = 10
mN = 12*(10) = 120

PV = FVN * (1 + rS/m)-mN
= $5,000,000 * (1.005)-120
= $5,000,000 * (0.549633)
= $2,748,163.67

При применении формулы 9 мы используем периодическую ставку (в данном случае, месячную ставку) и соответствующее количество периодов с ежемесячным начислением процентов (в данном случае 10 лет ежемесячных начислений или 120 периодов).

Другие новости по этой теме:
В рамках изучения количественных методов финансового анализа по программе CFA рассмотрим методику расчета стоимости финансирования будущих обязательств.
CFA - Расчет стоимости финансирования будущих обязательств
Рассмотрим на концепцию амортизации кредита, а также примеры составления таблицы амортизации кредита и расчета выплат по кредиту, в рамках изучения количественных методов финансового анализа по программе CFA.
CFA - Расчет амортизации кредита и выплат по кредиту
Рассмотрим порядок расчета текущей или приведенной стоимости серии денежных потоков, с поясняющими примерами, в рамках изучения количественных методов финансового анализа по программе CFA.
CFA - Как рассчитывать текущую стоимость (PV) серии денежных потоков (аннуитета и перпетуитета)?
Рассмотрим равномерные и неравномерные последовательности денежных потоков, изучаемые в рамках программы CFA, а также порядок и примеры расчета таких аннуитетов.
CFA - Как рассчитывать будущую стоимость (FV) последовательности денежных потоков (аннуитета)?
Рассмотрим порядок расчета эффективной годовой процентной ставки (EAR) на основе заявленной годовой ставки и периодичности начисления процентов, а также примеры применения EAR в финансовых вычислениях.
CFA - Как вычислять эффективную годовую процентную ставку (EAR)?
Рассмотрим временную стоимость денег (TVM) единичного потока денежных средств, а также порядок расчета будущей стоимости (FV) при различных способах начисления процентов.
CFA - Как рассчитывать будущую стоимость денежного потока (FV)?
Программа CFA часто ссылается на процентные ставки. Прежде чем перейти к механике временной стоимости денег (TVM), необходимо проиллюстрировать основные экономические концепции. Рассмотрим сущность и интерпретацию процентных ставок в рамках программы CFA.
CFA - Как интерпретировать процентные ставки?
Большая часть работы финансовых аналитиков также включает в себя оценку операций с текущими и будущими потоками денежных средств. Рассмотрим концепцию и особенности практического расчета TVM в рамках программы CFA.
CFA - Концепция и практическое применение временной стоимости денежных средств.
Раскрытия информации, содержащиеся в примечаниях к отчетности по IFRS и GAAP, содержат полезную информацию о возрасте и потенциальной полезности основных средств, принадлежащих компании. Используя эту информацию, финансовый аналитик может оценить общий возраст активов, принадлежащих компании и другие показатели.
Как анализировать раскрытия финансовой отчетности, касающиеся основных средств?
US GAAP и IFRS требуют от компаний списания обесценившихся активов через признание убытка в отчете о прибылях и убытках. Рассмотрим различия в применении стандартов, а также влияние обесценения ОС и НМА на ключевые финансовые показатели и отчетность компании.
Как обесценение и переоценка активов по IFRS и GAAP влияют на финансовые показатели и отчетность?
US GAAP и IFRS допускают использование различных методов амортизации основных средств. Рассмотрим порядок применения прямолинейного, ускоренного и производственного метода амортизации, а также влияние этих методов на отчетность и финансовые показатели компаний.
Как методы амортизации основных средств влияют на финансовые показатели и отчетность?
Рассмотрим, как выбор между капитализацией и прямым списанием затрат на финансовый результат влияет на чистую прибыль, собственный капитал, общие активы, движение денежных средств от операционной и инвестиционной деятельности и различные финансовые коэффициенты.
Как учет затрат влияет на финансовую отчетность по GAAP и IFRS и финансовые показатели?