Доверительные интервалы используются для нахождения диапазона значений оцениваемой величины. Рассмотрим эту концепцию, а также концепцию степеней свободы (DF) и t-распределения Стьюдента, - в рамках изучения количественных методов по программе CFA.
Когда нам нужно получить одно число в качестве оценки параметра совокупности, мы используем точечную оценку. Тем не менее, из-за ошибки выборки, точечная оценка не будет в точности равняться параметру совокупности при любом размере данной выборки.
Часто, вместо точечной оценки, более полезным подходом будет найти диапазон значений, в рамках которого, как мы ожидаем, может находится значение искомого параметра с заданным уровнем вероятности.
Этот подход называется интервальной оценкой параметра (англ. 'interval estimate of parameter'), а доверительный интервал выполняет роль этого диапазона значений.
Доверительный интервал (англ. 'confidence interval') представляет собой диапазон, для которого можно утверждать, с заданной вероятностью \(1 - \alpha \), называемой степенью доверия (или степенью уверенности, англ. 'degree of confidence'), что он будет содержать оцениваемый параметр.
Этот интервал часто упоминается как \(100 (1 - \alpha)\% \) доверительный интервал для параметра.
Конечные значения доверительного интервала называются нижним и верхним доверительными пределами (или доверительными границами или предельной погрешностью, англ. 'lower/upper confidence limits').
В этом чтении, мы имеем дело только с двусторонними доверительными интервалами - доверительные интервалами, для которых мы вычисляем и нижние и верхние пределы.
Кроме того, можно определить два типа односторонних доверительных интервалов для параметра совокупности.
Нижний односторонний доверительный интервал устанавливает только нижний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности равен или превышает нижний предел.
Верхний односторонний доверительный интервал устанавливает только верхний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности меньше или равен верхнему пределу.
Инвестиционные аналитики редко используют односторонние доверительные интервалы.
Доверительные интервалы часто дают либо вероятностную интерпретацию, либо практическую интерпретацию.
При вероятностной интерпретации, мы интерпретируем 95%-ный доверительный интервал для среднего значения совокупности следующим образом.
При повторяющейся выборке, 95% таких доверительных интервалов будут, в конечном счете, включать в себя среднее значение совокупности.
Например, предположим, что мы делаем выборку из совокупности 1000 раз, и на основании каждой выборки мы построим 95%-ный доверительный интервал, используя вычисленное выборочное среднее.
Из-за случайного характера выборок, эти доверительные интервалы отличаются друг от друга, но мы ожидаем, что 95% (или 950) этих интервалов включают неизвестное значение среднего по совокупности.
На практике мы обычно не делаем такие повторяющиеся выборки. Поэтому в практической интерпретации, мы утверждаем, что мы 95% уверены в том, что один 95%-ный доверительный интервал содержит среднее по совокупности.
Мы вправе сделать это заявление, потому что мы знаем, что 95% всех возможных доверительных интервалов, построенных аналогичным образом, будут содержать среднее по совокупности.
Доверительные интервалы, которые мы обсудим в этом чтении, имеют структуры, подобные описанной ниже базовой структуре.
Доверительный интервал \(100 (1 - \alpha)\% \) для параметра имеет следующую структуру.
Точечная оценка \(\pm\) Фактор надежности \(\times\) Стандартная ошибка
где
Самый базовый доверительный интервал для среднего значения по совокупности появляется тогда, когда мы делаем выборку из нормального распределения с известной дисперсией. Фактор надежности в данном случае на основан стандартном нормальном распределении, которое имеет среднее значение, равное 0 и дисперсию 1.
Стандартная нормальная случайная величина обычно обозначается как \(Z\). Обозначение \(z_\alpha \) обозначает такую точку стандартного нормального распределения, в которой \(\alpha\) вероятности остается в правом хвосте.
Например, 0.05 или 5% возможных значений стандартной нормальной случайной величины больше, чем \( z_{0.05} = 1.65 \).
Предположим, что мы хотим построить 95%-ный доверительный интервал для среднего по совокупности, и для этой цели, мы сделали выборку размером 100 из нормально распределенной совокупности с известной дисперсией \(\sigma^2\) = 400 (значит, \(\sigma\) = 20).
Мы рассчитываем выборочное среднее как \( \overline X = 25 \). Наша точечная оценка среднего по совокупности, таким образом, 25.
Если мы перемещаем 1.96 стандартных отклонений выше среднего значения нормального распределения, то 0.025 или 2.5% вероятности остается в правом хвосте. В силу симметрии нормального распределения, если мы перемещаем 1.96 стандартных отклонений ниже среднего, то 0.025 или 2.5% вероятности остается в левом хвосте.
В общей сложности, 0.05 или 5% вероятности лежит в двух хвостах и 0.95 или 95% вероятности лежит между ними.
Таким образом, \( z_{0.025} = 1.96\) является фактором надежности для этого 95%-ного доверительного интервала. Обратите внимание на связь \(100 (1 - \alpha)\% \) для доверительного интервала и \(z_{\alpha/2}\) для фактора надежности.
Стандартная ошибка среднего значения выборки, заданная Формулой 1, равна:
\( \sigma_{\overline X} = 20 \Big / \sqrt{100} = 2 \)
Доверительный интервал, таким образом, имеет нижний предел:
\( \overline X - 1.96 \sigma_{\overline X} \) = 25 - 1.96(2) = 25 - 3.92 = 21.08.
Верхний предел доверительного интервала равен:
\( \overline X + 1.96\sigma_{\overline X} \) = 25 + 1.96(2) = 25 + 3.92 = 28.92
95%-ный доверительный интервал для среднего по совокупности охватывает значения от 21.08 до 28.92.
Доверительный интервал \(100 (1 - \alpha)\% \) для среднего по совокупности \( \mu \), когда мы делаем выборку из нормального распределения с известной дисперсией \( \sigma^2 \) задается формулой:
\( \Large \dst \overline X \pm z_{\alpha /2}{\sigma \over \sqrt n} \) (Формула 4)
Факторы надежности для наиболее часто используемых доверительных интервалов приведены ниже.
Мы используем следующие факторы надежности при построении доверительных интервалов на основе стандартного нормального распределения:
На практике, большинство финансовых аналитиков используют значения для \(z_{0.05}\) и \(z_{0.005}\), округленные до двух знаков после запятой.
Для справки, более точными значениями для \(z_{0.05}\) и \(z_{0.005}\) являются 1.645 и 2.575, соответственно.
Для быстрого расчета 95%-ного доверительного интервала \(z_{0.025}\) иногда округляют 1.96 до 2.
Эти факторы надежности подчеркивают важный факт о всех доверительных интервалах. По мере того, как мы повышаем степень доверия, доверительный интервал становится все шире и дает нам менее точную информацию о величине, которую мы хотим оценить.
«Чем уверенней мы хотим быть, тем меньше мы должны быть уверены»
см. Freund и Williams (1977), стр. 266.
На практике, допущение о том, что выборочное распределение выборочного среднего, по меньшей мере, приблизительно нормальное, часто является обоснованным, либо потому, что исходное распределение приблизительно нормальное, либо потому что мы имеем большую выборку и поэтому к ней применима центральная предельная теорема.
Однако, на практике, мы редко знаем дисперсию совокупности. Когда дисперсия генеральной совокупности неизвестна, но выборочное среднее, по меньшей мере, приблизительно нормально распределено, у нас есть два приемлемых пути чтобы вычислить доверительные интервалы для среднего значения совокупности.
Вскоре мы обсудим более консервативный подход, который основан на t-распределении Стьюдента (t-распределение, для краткости).
В финансовой литературе, это наиболее часто используемый подход для статистической оценки и проверки статистических гипотез, касающихся среднего значения, когда дисперсия генеральной совокупности не известна, как для малого, так и для большого размер выборки.
Второй подход к доверительным интервалам для среднего по совокупности, основанного на стандартном нормальном распределении, - это z-альтернатива (англ. 'z-alternative'). Он может быть использован только тогда, когда размер выборки является большим (в общем случае, размер выборки 30 или больше, можно считать большим).
В отличии от доверительного интервала, приведенного в Формуле 4, этот доверительный интервал использует стандартное отклонение выборки \(s\) при вычислении стандартной ошибки выборочного среднего (по Формуле 2).
Доверительный интервал \(100 (1 - \alpha)\% \) для среднего по совокупности \( \mu \) при выборке из любого распределения с неизвестной дисперсией, когда размер выборки большой, задается формулой:
\( \Large \dst \overline X \pm z_{\alpha /2}{s \over \sqrt n} \) (Формула 5)
Поскольку этот тип доверительного интервала применяется довольно часто, мы проиллюстрируем его вычисление в Примере 4.
Предположим, что инвестиционный аналитик делает случайную выборку акций взаимных фондов США и рассчитывает средний коэффициент Шарпа.
[см. также: CFA - Коэффициент Шарпа]
Размер выборки равен 100, а средний коэффициент Шарпа составляет 0.45. Выборка имеет стандартное отклонение 0.30.
Рассчитайте и интерпретируйте 90-процентный доверительный интервал для среднего по совокупности всех акций взаимных фондов США с использованием фактора надежности на основе стандартного нормального распределения.
Фактор надежности для 90-процентного доверительного интервала, как указано ранее, составляет \( z_{0.05} = 1.65 \).
Доверительный интервал будет равен:
\( \begin{aligned} & \overline X \pm z_{0.05}{s \over \sqrt n } \\ &= 0.45 \pm 1.65{0.30 \over \sqrt {100}} \\ &= 0.45 \pm 1.65(0.03) = 0.45 \pm 0.0495 \end{aligned} \)
Доверительный интервал охватывает значения 0.4005 до 0.4995, или от 0.40 до 0.50, с округлением до двух знаков после запятой. Аналитик может сказать с 90-процентной уверенностью, что интервал включает среднее по совокупности.
В этом примере аналитик не делает никаких конкретных предположений о распределении вероятностей, характеризующем совокупность. Скорее всего, аналитик опирается на центральную предельную теорему для получения приближенного нормального распределения для выборочного среднего.
Как показывает Пример 4, даже если мы не уверены в характере распределения совокупности, мы все еще можем построить доверительные интервалы для среднего по совокупности, если размер выборки достаточно большой, поскольку можем применить центральную предельную теорему.
Обратимся теперь к консервативной альтернативе и используем t-распределение Стьюдента, чтобы построить доверительные интервалы для среднего по совокупности, когда дисперсия генеральной совокупности не известна.
Для доверительных интервалов на основе выборок из нормально распределенных совокупностей с неизвестной дисперсией, теоретически правильный фактор надежности основан на t-распределении. Использование фактора надежности, основанного на t-распределении, имеет важное значение для выборок небольшого размера.
Применение фактора надежности \(t\) уместно, когда дисперсия генеральной совокупности неизвестна, даже если у нас есть большая выборка и мы можем использовать центральную предельную теорему для обоснования использования фактора надежности \(z\). В этом случае большой выборки, t-распределение обеспечивает более консервативные (широкие) доверительные интервалы.
t-распределение является симметричным распределением вероятностей и определяется одним параметром, известным как степени свободы (DF, от англ. 'degrees of freedom'). Каждое значение для числа степеней свободы определяет одно распределение в этом семействе распределений.
Далее мы сравним t-распределения со стандартным нормальным распределением, но сначала мы должны понять концепцию степеней свободы. Мы можем сделать это путем изучения расчета выборочной дисперсии.
Формула 3 дает несмещенную оценку выборочной дисперсии, которую мы используем. Выражение в знаменателе, \( n - 1 \), означающее размер выборки минус 1, это число степеней свободы при расчете дисперсии совокупности с использованием Формулы 3.
Мы также используем \( n - 1 \) как число степеней свободы для определения факторов надежности на основе распределения Стьюдента. Термин «степени свободы» используются, так как мы предполагаем, что в случайной выборке наблюдения отобраны независимо друг от друга. Числитель выборочной дисперсии, однако, использует выборочное среднее.
Каким образом использование выборочного среднего влияет на количество наблюдений, отобранных независимо, для формулы выборочной дисперсии?
При выборке размера 10 и среднем значении в 10%, к примеру, мы можем свободно отобрать только 9 наблюдений. Независимо от отобранных 9 наблюдений, мы всегда можем найти значение для 10-го наблюдения, которое дает среднее значение, равное 10%. С точки зрения формулы выборочной дисперсии, здесь есть 9 степеней свободы.
Учитывая, что мы должны сначала вычислить выборочное среднее от общего числа \(n\) независимых наблюдений, только \(n - 1\) наблюдений могут быть отобраны независимо друг от друга для расчета выборочной дисперсии.
Концепция степеней свободы часто применяется в финансовой статистике, и вы встретите ее в последующих чтениях.
Предположим, что мы делаем выборку из нормального распределения.
Коэффициент \(z = (\overline X - \mu) \Big / (\sigma \big / \sqrt n) \) нормально распределен со средним значением 0 и стандартным отклонением 1, однако, коэффициент \(t = (\overline X - \mu) \Big / (s \big / \sqrt n) \) следует t-распределению со средним 0 и \(n - 1\) степеней свободы.
Коэффициент \(t\) не является нормальным, поскольку представляет собой отношение двух случайных величин, выборочного среднего и стандартного отклонения выборки.
Определение стандартной нормальной случайной величины включает в себя только одну случайную величину, выборочное среднее. По мере увеличения степеней свободы, однако, t-распределение приближается к стандартному нормальному распределению.
На Рисунке 1 показано стандартное нормальное распределение и два t-распределения, одно с DF = 2 и одно с DF = 8.
Из трех распределений, показанных на Рисунке 1, стандартное нормальное распределение имеет хвосты, которые стремятся к нулю быстрее, чем хвосты двух t-распределений. t-распределение симметрично распределено вокруг среднего нулевого значения, так же как и нормальное распределение.
По мере увеличения степеней свободы, t-распределение приближается к стандартному нормальному распределению. t-распределение с DF = 8 ближе к стандартному нормальному, чем t-распределение с DF = 2.
Помимо области плюс и минус четырех стандартных отклонений от среднего значения, остальная область под стандартным нормальным распределением, как представляется, близка к 0. Однако, оба t-распределения содержать некоторую площадь под каждой кривой за пределом четырех стандартных отклонений.
t-распределения имеют более толстые хвосты, но хвосты t-распределения Стьюдента с DF = 8 сильнее напоминают хвосты нормального распределения. По мере увеличения степеней свободы, хвосты распределения Стьюдента становятся менее толстыми.
Для часто используемых значений распределения Стьюдента составлены таблицы. Например, для каждой степени свободы \(t_{0.10}\), \(t_{0.05}\), \(t_{0.025}\), \(t_{0.01}\) и \(t_{0.005}\) значения будут такими, что соответственно, 0.10, 0.05, 0.025, 0.01 и 0.005 вероятности останется в правом хвосте для заданного числа степеней свободы.
Например,
для DF = 30,
\(t_{0.10}\) = 1.310,
\(t_{0.05}\) = 1.697,
\(t_{0.025}\) = 2.042,
\(t_{0.01}\) = 2.457,
\(t_{0.005}\) = 2.750.
Приведем форму доверительных интервалов для среднего по совокупности, используя распределение Стьюдента.
Если мы делаем выборку из генеральной совокупности с неизвестной дисперсией и соблюдается одно из перечисленных ниже условий:
то доверительный интервал \(100 (1 - \alpha)\% \) для среднего совокупности \( \mu \) задается формулой:
\( \Large \dst \overline X \pm t_{\alpha /2}{s \over \sqrt n} \) (Формула 6)
где число степеней свободы для \( t_{\alpha /2}\) равно \( n-1 \), а \( n \) - это размер выборки.
Пример 5 использует данные Примера 4, но применяет t-статистику, а не z-статистику, чтобы рассчитать доверительный интервал для среднего значения совокупности коэффициентов Шарпа.
Как и в Примере 4, инвестиционный аналитик стремится вычислить 90-процентный доверительный интервал для среднего по совокупности коэффициентов Шарпа, основанных на случайной выборке из 100 взаимных фондов США.
Выборочное среднее коэффициентов Шарпа составляет 0.45, а выборочное стандартное отклонение - 0.30.
Теперь, признав, что дисперсия генеральной совокупности распределения коэффициентов Шарпа неизвестна, аналитик решает вычислить доверительный интервал, используя теоретически правильную t-статистику.
Поскольку размер выборки равен 100, DF = 99. Используя таблицу степеней свободы, мы находим, что \(t_{0.05}\) = 1.66.
Этот фактор надежности немного больше, чем фактор надежности \(z_{0.05}\) = 1.65, который был использован в Примере 4.
Доверительный интервал будет:
\( \begin{aligned} & \overline X \pm t_{0.05}{s \over \sqrt n } \\ &= 0.45 \pm 1.66{0.30 \over \sqrt {100}} \\ &= 0.45 \pm 1.66(0.03) = 0.45 \pm 0.0498 \end{aligned} \)
Доверительный интервал охватывает значения 0.4002 до 0.4998, или 0.40 до 0.50, с двумя знаками после запятой. При округлении до двух знаков после запятой, доверительный интервал не изменился по сравнению с Примером 4.
В Таблице 3 приведены различные факторы надежности, которые мы использовали.
Выборка из: |
Статистика для выборки малого размера |
Статистика для выборки большого размера |
---|---|---|
Нормальное распределение с известной дисперсией |
\(z\) |
\(z\) |
Нормальное распределение с неизвестной дисперсией |
\(t\) |
\(t\)* |
Ненормальное распределение с известной дисперсией |
недоступно |
\(z\) |
Ненормальное распределение с неизвестной дисперсией |
недоступно |
\(t\)* |
* Использование \(z\) также приемлемо.