Ранее мы отмечали, что стандартное отклонение легче интерпретировать, чем дисперсию, поскольку стандартное отклонение выражается в тех же единицах измерения, что и наблюдения.

Иногда нам может быть трудно понять, что означает стандартное отклонение с точки зрения относительной степени изменчивости различных наборов данных, либо потому, что наборы данных имеют значительно отличающиеся средние, либо потому, что наборы данных имеют разные единицы измерения.

Далее мы рассмотрим относительную меру дисперсии - коэффициент вариации, который может быть полезен в таких ситуациях. Относительная дисперсия (англ. 'relative dispersion') - это значение дисперсии, рассчитанное относительно контрольного значения.


Мы можем проиллюстрировать проблему интерпретации стандартного отклонения для двух значительно отличающихся наборов данных, используя две гипотетические выборки финансовых данных.

Первая выборка включает небольшие компании с объемом продаж за 2003 год в размере €50 млн., €75 млн., €65 млн. и €90 млн.

Вторая выборка включает крупные компании с объемом продаж за 2003 году в размере €800 млн., €825 млн., €815 млн. и €840 млн.

Используя Формулу 14, мы можем убедиться, что стандартное отклонение продаж для обоих выборок составляет €16.8 млн.

Вторая выборка была создана путем добавления €750 млн. к каждому наблюдению из первой выборки. Стандартное отклонение (и дисперсия) имеет свойство оставаться неизменным, если мы добавляем постоянную величину к каждому наблюдению.

В первой выборке самое большое наблюдение, €90 млн., - на 80% больше, чем самое маленькое наблюдение, €50 млн. Во второй выборке самое большое наблюдение всего на 5% больше, чем самое маленькое наблюдение.

По сути, стандартное отклонение в размере €16.8 млн. представляет собой высокую степень изменчивости для первой выборки со средними продажами в размере €70 млн., но незначительную степень изменчивости для второй выборки, средние продажи которой составляют €820 млн.

Коэффициент вариации полезен в ситуациях, подобных только что описанной.

Формула коэффициента вариации.

Коэффициент вариации или CV (от англ. 'coefficient of variation'), представляет собой отношение стандартного отклонения набора наблюдений к их среднему значению:

\(\large \dst CV = s \big/ \ \overline{X} \) (Формула 15)

где

  • \(s\) - стандартное отклонение выборки, а
  • \(\overline X \) - среднее значение выборки.

На практике CV обычно рассчитывается в процентах, как \(100( s / \ \overline X) \).

Например, когда наблюдения представляют собой ставки доходности, коэффициент вариации измеряет величину риска (стандартное отклонение) на единицу средней доходности. Выражая величину вариации относительно среднего значения наблюдений, коэффициент вариации позволяет напрямую сравнивать дисперсию для различных наборов данных.

Коэффициент вариации не привязан к шкале измерения (то есть он не имеет единиц измерения).

Мы можем проиллюстрировать применение коэффициента вариации на нашем предыдущем примере двух выборок финансовых данных компаний.

  • Коэффициент вариации для первой выборки составляет (€16.8 млн.) / (€70 млн.) = 0,24.
  • Коэффициент вариации для второй выборки составляет (€16.8 млн.) / (€820 млн.) = 0,02.

Это подтверждает нашу интуитивную догадку о том, что первая выборка имеет гораздо большую изменчивость продаж, чем вторая выборка.

Обратите внимание, что 0,24 и 0,02 являются "чистыми числами" в том смысле, что они не содержат единиц измерения (поскольку мы разделили стандартное отклонение на среднее значение, которое измеряется в тех же единицах, что и стандартное отклонение).

Если нам нужно сравнить дисперсию наборов данных, выраженных в разных единицах измерения, коэффициент вариации может быть весьма полезен, поскольку он не привязан к единицам измерения.

Приведенный ниже пример иллюстрирует расчет коэффициента вариации.

Пример расчета коэффициента вариации для ставок доходности.

Таблица 24 включает среднегодовую доходность и стандартные отклонения, рассчитанные на основе месячной доходности основных фондовых индексов четырех азиатско-тихоокеанских рынков. Это индексы S&P/ASX 200 Index (Австралия), Hang Seng Index (Гонконг), Straits Times Index (Сингапур) и KOSPI Composite Index (Южная Корея).

Таблица 24. Среднеарифметическая годовая доходность и стандартное отклонение доходности для Азиатско-Тихоокеанских фондовых рынков, 2003-2012 гг.

Рынок

Среднее
арифметическое
доходности (%)

Стандартное
отклонение
доходности (%)

Австралия

5.0

13.6

Гонконг

9.4

22.4

Сингапур

9.3

19.2

Южная Корея

12.0

21.5

Источник: finance.yahoo.com.

Используя информацию и Таблицы 24, сделайте следующее:

  1. Рассчитайте коэффициент вариации для каждого рынка.
  2. Ранжируйте рынки от наиболее рискованных до наименее рискованных, используя CV в качестве меры относительной дисперсии.
  3. Определите, есть ли большая разница между абсолютной или относительной рискованностью рынков Гонконга и Сингапура. Используйте стандартное отклонение как меру абсолютного риска и CV как меру относительного риска.

Решение для части 1:

  • Австралия: CV = 13.6%/5.0% = 2.720.
  • Гонконг: CV = 22.4%/9.4% = 2.383.
  • Сингапур: CV = 19.2%/9.3% = 2.065.
  • Южная Корея: CV = 21.5%/12.0% = 1.792.

Решение для части 2:

Согласно CV, за исследуемый период 2003-2012 гг. ранжирование по степени риска выглядит следующим образом:

  • Австралия (наиболее рискованно),
  • Гонконг,
  • Сингапур и
  • Южная Корея (наименее рискованно).

Решение для части 3:

Согласно стандартному отклонению и CV, рынок Гонконга был более рискованным, чем рынок Сингапура.

Стандартное отклонение доходности Гонконга составляло (22.4 - 19.2)/19.2 = 0.167, что примерно на 17% больше, чем доходность Сингапура.

Разница же по CV составляет (2.383 - 2.065)/2.065 = 0.154 или примерно 15%.

Таким образом, CV показывают немного меньшую разницу между изменчивостью доходности в Гонконге и Сингапуре, чем изменчивость, которую демонстрирует стандартное отклонение.